Available online at www.sciencedirect.com
JOURNAL OF

ScienceDirect COMPUTATIONAL
PHYSICS

ELSEVIER Journal of Computational Physics 227 (2008) 5045-5071

www.elsevier.com/locate/jcp

The immersed interface method for simulating prescribed
motion of rigid objects in an incompressible viscous flow

Sheng Xu*

Department of Mathematics, Southern Methodist University, 3200 Dyer Street, P.O. Box 750156, Dallas, TX 75275-0156, USA

Received 9 July 2007; received in revised form 26 December 2007; accepted 20 January 2008
Available online 9 February 2008

Abstract

In the immersed interface method, a boundary immersed in a fluid is represented as a singular force in the Navier—
Stokes equations. This paper presents an explicit approach for computing the singular force to enforce prescribed motion
of a rigid boundary in an incompressible viscous flow. The tangential component of the singular force is related to the
surface vorticity and is calculated from the normal derivative of the velocity. The normal component of the singular force
is determined from a predictor and a corrector. The predictor uses the normal derivative of the vorticity. The corrector
superposes a homogeneous solution to the pressure Poisson equation to achieve the desired normal derivative of the pres-
sure. In the current immersed interface method, the velocity and the pressure are solved using the MAC scheme with the
incorporation of jump conditions induced by the singular force and a discontinuous finite body force. The body force is
applied to obtain the rigid motion of the fluid enclosed by the boundary. Circular Couette flow, flow past a cylinder, and
flow around flappers are simulated to test the accuracy, stability, and efficiency of the method as well as the effect of the
corrector. With no stiff springs to model rigid boundaries, the method is stable at relatively high Reynolds numbers.
© 2008 Elsevier Inc. All rights reserved.

Keywords: The immersed interface method; The immersed boundary method; Complex moving geometries; Flow around multiple objects;
Singular forces; Jump conditions; Poisson solvers

1. Introduction

The immersed interface method was first proposed by LeVeque and Li [17,18] with the motivation to
improve the accuracy of Peskin’s immersed boundary method [25,26]. Both methods have been developed
in various aspects and applied in various problems since their first appearance, as summarized in Peskin’s
overview paper [27] and a recent book by Li and Ito [20]. The current author’s previous papers on the
immersed interface method [36-38] provide some detailed comparisons between the two methods along with
extensive citations.

* Tel.: +1 214 768 2985.
E-mail address: sxu@smu.edu.
URL: http://faculty.smu.edu/sxu.

0021-9991/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/.jcp.2008.01.053

mailto:sxu@smu.edu
http://faculty.smu.edu/sxu

5046 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

When applied to flow simulation, the immersed interface method shares the same mathematical formula-
tion as the immersed boundary method. In particular, the boundary of an immersed object is formulated
as a singular force in the incompressible Navier—Stokes equations. For the 2D case shown in Fig. 1, the math-
ematical formulation reads

o . . .

a—j+v.(aﬁ) = pr+RLeAB+/rf(oc,t)é(fc’fX(oc,t))daer, (1)

Ap=s5,+V- (/_f(a,t)a(;e_)?(a, t))doc+5), (2)
r

where ¥ = (u,v) is the velocity, p is the pressure, Re is the Reynolds number, I' is the immersed boundary
parametrized by the Lagrangian parameter «, / = (f+,fy) 1s the density of the singular force, J(-) is the 2D Dir-
ac 6 function, ¥ = (x,) is Cartesian coordinates, X = (X, Y) is the Cartesian coordinates of the boundary, and
b = (b, b,) is a finite body force. The term s, is

oD - 1 Ou Ov Ou Ov
where D = V - 7 is the divergence of the velocity. Terms with the divergence D are zero in theory, but they may
be kept in numerics to better enforce the divergence-free condition.

Egs. (1) and (2) are defined on the entire region Q which is composed by the subdomains Q" and Q in
Fig. 1. The subdomains Q* and Q~ are filled with the same fluid and are separated by the immersed boundary
I'. Without loss of generality, the formulation given by Eqgs. (1) and (2) along with Fig. 1 will be used hereafter
for the presentation. In Fig. 1, the tangent 7 and the normal 7 to I are calculated as

. 1 aX
T= (Txa Ty) = 7 o0’ (4)
= (nxvny) = (Ty7 _Tx)’ (5>
where J is
oxX
=]| (©

With this formulation, both the immersed boundary method and the immersed interface method allow for
fixed grids and fast flow solvers on the entire region Q. Therefore they can efficiently simulate the interaction
of a fluid with multiple moving boundaries. Regarding this formulation, there are two crucial questions. One is

=|

Qt

Tt

y
B/

X

Fig. 1. Geometric description of an immersed boundary.

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5047

how to calculate the singular force (the force density f). The other is how to numerically treat the force sin-
gularity (the Dirac ¢ function).

The immersed boundary method and the immersed interface method differ in the numerical treatment of
the force singularity at I'. The immersed boundary method uses discretized smooth functions to approximate
the Dirac ¢ function. The immersed interface method directly incorporates singularity-induced jump condi-
tions across I into numerical schemes, so it can achieve second-order accuracy and sharp fluid-solid inter-
faces. The required jump conditions in the immersed interface method can be derived systematically [36].
They can be incorporated into finite difference and interpolation schemes according to a generalized Taylor
expansion [36]

o) (5 o (gl (,)
g =3 S o e By 7)

n=0 m n=0 n

where g(z) is a nonsmooth function shown in Fig. 2a, and [g"(z;)] = g (z]) — g")(z;") denotes jump condi-
tions along the z direction. Below are examples of modified second-order central finite difference schemes
which have discontinuities at z = &(z;_| < &€ < z;) and z = n(z; < n < z;;) on its stencil as shown in Fig. 2b.

z7 zo,) — gzt 2. _[gln) 2 f,0)
deler) _slein) ~#lel) | o 4 L (Z_o LG > LU W) -
dzg(zi_) _glzy,) — 28(z) +g(z",) 2
dz2 W +O0r)
3. g 3 (n)
- (Z Ll oy)l _W>_ o)

An interpolation scheme also needs to account for the jump conditions if its stencil contains discontinuities.
The following second-order interpolation scheme applies to the case shown in Fig. 2b:

o) = 88 H8G) ;g(z';l) + O(R) % {aga(f)} (21 — &) — % [a%(zm} (zip1 — 1) (10)

Using modified finite difference and interpolation schemes, the mathematical formulation, Egs. (1) and (2), can
be discretized on a fixed Cartesian grid, and fast flow solvers based on a Cartesian grid can be adopted. An
overview of the immersed interface method is given in Section 2.

This paper focuses on the first question: how to calculate the singular force (the force density f) in the
immersed interface method. In the discrete form, the mapping between the singular force and the boundary
motion can be written as

FE) =V, (11)

where the force array f is composed of the values of f; and f, at all discrete Lagrangian points that are used to
represent the boundary, the velocity array V is composed of the values of u and v at these points, and the oper-
ator F depends on the spatial discretization, interpolation, and temporal integration in the immersed interface
method.

Zo Zy Iy Z3 e Zm-1Zm Zm+l Z

Fig. 2. (a) A nonsmooth function for generalized Taylor expansion, and (b) a stencil for generalized finite difference schemes.

5048 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

Most papers on the immersed boundary method and the immersed interface method solve the usual free-
boundary problem. In the free-boundary problem, the boundary is updated by

X = Z(V), (12)

where the coordinate array X is composed of the values of X' and Y at the Lagrangian points, and the operator
7 depends on the temporal integration for the boundary motion. The singular force is computed from a con-
stitutive law, which relates the force density to the boundary configuration,

f=g(X), (13)
where the function G is given by a boundary model, for example, an elastic structure model. The computation
of the singular force is therefore a modeling process. The boundary motion results from the coupling between

the boundary model and fluid flow, and is unknown in advance. From the current time step » to the next n + 1,
an explicit scheme gives

Vn+1 _]:(Q(Xn)), (14)
X" = Z(V"). (15)
Numerical instability can occur if the boundary model, Eq. (13), is stiff. Tu and Peskin [34], Stockie and Wet-

ton [32], and Cortez et al. [4] have conducted stability analysis for the immersed boundary method. To im-

prove on the numerical stability, an implicit treatment was implemented in the immersed interface method
[18,16], which is

Vn+1 _ .ﬁ-(g()(nwtl))7 (16)
X" = X" 4 %St(V” + vy, (17)

where 6t denotes the time step. Nonlinear solvers, such as BFGS or SR1, are needed in the implicit treatment
[18,16].

In this paper, an inverse problem is pursued, in which the boundary motion is prescribed in advance, and
the singular force is sought to enforce the known boundary motion. There are two ways to solve this inverse
problem. One is the use of ad hoc penalty approaches, such as stiff spring models [14,37] and feedback controls
[9,37]. They have the same algorithmic nature as constitutive laws. A widely-used feedback control is the one
by Goldstein et al. [9]

f:Ks‘(Xe_)?)+Kd(I7e_I7); (18)

where K; and K, are two positive constants, X, and X are the prescribed and simulated boundary coordinates,
respectively, and 7, and V are the prescribed and simulated boundary velocity, respectively. If K, is zero, this
feedback control is equivalent to a spring model [14,37]. The response times of spring models or feedback con-
trols have to be much shorter than the characteristic time scales of the flow [14,37], which requires large K or
K, and causes numerical instability at high Reynolds numbers. The disadvantages of ad hoc penalty ap-
proaches include adjustment of free parameters, spurious oscillations, and numerical instability.

The other way to find the singular force for the prescribed boundary motion is to directly solve the mapping
between the singular force and the boundary motion. If the nonlinear terms in the Navier-Stokes equations
are discretized explicitly from their convective form, the mapping given by Eq. (11) is linear and can be
reduced to the matrix-vector form

Ff+Vy=V, (19)

where V, corresponds to f = 0. If the boundary velocity is prescribed as V = V,, the above linear system can
be solved to obtain f. Depending on algorithms, the linear system is formed and solved directly or indirectly.
The idea to form and solve a linear system to enforce given boundary conditions was introduced by Calhoun
[3]. Calhoun considered the immersed interface method in a streamfunction—vorticity formulation. The no-slip
boundary condition is imposed through a distribution of vorticity sources along the boundary. Calhoun pre-
sented in detail how to set up and solve a linear system for the vorticity sources along a stationary boundary,

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5049

and proposed to use GMRES to handle a moving boundary. Li et al. [21] has implemented a similar idea to
impose Neumann pressure boundary conditions in Stokes flows.

Le et al. [15] employed the same idea in their immersed interface method to enforce the prescribed velocity.
Their linear system can be written as

FE"™ 4 Vo = Vi (20)

where the time level of the force density f is denoted as n +% since mixed explicit and implicit schemes were
used in their flow solver. By setting f be each column of an identity matrix, they integrated the discretized gov-
erning equations to obtain V. The matrix F has the corresponding column equal to V — V. If all boundaries
are stationary and the time step of the temporal integration is constant, the matrix F needs to be formed and
inverted only once. Otherwise, the matrix F changes in each time step and is not formed explicitly, and
GMRES is used to solve the linear system iteratively.

In this paper, an explicit approach is proposed to compute the singular force for a rigid boundary with pre-
scribed motion. The basic process is to explicitly compute the singular force from available jump conditions.
The available jump conditions are numerically calculated from the currently known flow field. This approach
does not need to form the above-mentioned matrix-vector system; it does not require iterative solvers; and it
does not have numerical instability at relatively high Reynolds numbers. It has advantages in stability, effi-
ciency, simplicity, and extensibility. Based on Eq. (11), the explicit form in this approach can be written as

£ =F (V). (21)

So the singular force is computed from the known flow information at the current time step n. After the
singular force f” is computed, the flow field is updated to the next time step n + 1. This current approach
may be better interpreted as a way to explicitly implement velocity and pressure boundary conditions on
moving rigid objects that are embedded in a fixed Cartesian grid. Essentially, its algorithmic treatment of
the boundary is very similar to that of a body-fitted grid method which couples the velocity conditions
explicitly into one-sided finite difference schemes and applies the Neumann boundary condition for the
pressure Poisson equation.

The current approach shares the ideas from the methods by Russell and Wang [31] and Linnick and
Fasel [22]. In Russell and Wang’s method, the non-penetration boundary condition is satisfied by super-
posing a homogeneous solution to the Poisson equation for the streamfunction. In Linnick and Fasel’s
method, one-sided finite differences are used to obtain jump conditions for the vorticity and the stream-
function. The current approach is built upon the primitive-variable formulation, Eqs. (1) and (2). The
tangential component of a singular force is determined from the normal derivative of the velocity using
one-sided finite difference. The normal component is determined from a predictor and a corrector. The pre-
dictor uses the normal derivative of the vorticity. The corrector solves a Neumann-Dirichlet map and
superposes a homogeneous solution to the Poisson equation for the pressure to achieve the desired normal
derivative of the pressure. In addition, a discontinuous finite body force is applied such that the fluid
enclosed by the boundary is in rigid motion.

2. Overview of the immersed interface method

In the current implementation of the immersed interface method, the momentum equation, Eq. (1), and the
pressure Poisson equation, Eq. (2), are solved using the MAC scheme [11] along with a fourth-order RK time
integration scheme and an FFT-based Poisson solver. More details on the implementation are referred to [37].
A MAC grid is a staggered Cartesian grid, on which the pressure p and the velocity components « and v are
arranged as in Fig. 3. As pointed out by Johnston and Liu [12,13] and E and Liu [7], high order explicit time-
marching schemes are appropriate for flow of moderate to high Reynolds numbers, where the viscous time
step constraint is less restrictive than the convective one. However, explicit time-marching schemes are not
a requirement. If low Reynolds numbers are of interest, implicit treatment of the viscous terms can be adopted
instead. Since the MAC grid is uniform in the current implementation, an FFT-based Poisson solver can be
used, which solves the pressure Poisson equation in O(N In N) time, where N is the total number of MAC grid

5050 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

Fig. 3. Arrangement of the velocity components and the pressure on a MAC grid.

nodes for the pressure. FFT-based Poisson solvers can handle periodic, Dirichlet, Neumann, or mixed bound-
ary conditions at the far-field boundary B in Fig. 1 by using FFT, sine, cosine, or quarter-wave transforma-
tions [28].

A flow quantity at a fixed point in space may have a jump with respect to time when a boundary passes that
point, and a temporal jump condition can be related to a corresponding spatial jump condition [36,37]. In sim-
ulating a viscous flow, the incorporation of temporal jump conditions in temporal discretization has negligible
effect on simulation results [37,38]. In the current implementation, temporal jump conditions are not included.

The boundary I is rigid in the current consideration. It is represented by periodic cubic splines formed from
Lagrangian points. In Fig. 3, Lagrangian points are denoted as solid circles. As indicated by Egs. (8)—(10), the
jump contributions in the finite difference and interpolation schemes are non-zero only if their stencils cross
the boundary. In order to distinguish these stencils, the intersections between MAC grid lines and the bound-
ary are identified. The unknown coordinates of the intersections and the necessary jump conditions at the
intersections are interpolated from the Lagrangian points. In Fig. 3, the intersections are denoted as open
circles.

Define the central finite difference operators 6y, d,, ., and 6,, as

NONE %+ O (22)
0,()iy = % + ¢,y (23)
duxl)sy = Wi = 2;3;’ ey, o) (24)
3 () = Zé'y);”" w0, (25)

where 6x and &y are the spatial steps as shown in Fig. 3, and ¢,, ¢, c,v, and ¢, denote jump contributions. If the
stencils of the above finite difference operators cross I, the jump contributions are non-zero, and they can be
calculated according to Egs. (8) and (9). Otherwise, the jump contributions are zero, and usual central finite
difference schemes are recovered. With these central finite difference operators, the spatially discretized
momentum equation for the velocity component u at (i +1, /) can be written as

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5051

u

o
where the subscript (i +1, /) is neglected in the operators. A similar equation for v at (i, j + 1) can be obtained.
The discretized Poisson equation for the pressure p at (i, j) can be written as

oD 1
(Oxx +0p)p = — a5 2(6,(uD) + 6,(vD)) + Re (Oxx + 0yy)D + 2(6xudyv — S,udyv), (27)
where 22 is discretized by assuming D = 0 at the next time level.
The Values of u;j,u; ;,1,v;, and v, ; are needed in the discretized equations. They can be interpolated from

jand v, ;1. Define the interpolation operators ¢ and &; as

—0x () = 0,(vu) = dup + - (5xx + Op)u, (26)

_ l+1j + t—l,j
gi(.)i‘j — ()2% + i), (28)
1t)0
8](')i,_j = ()”22()2 + cj(')i,jv (29)

where ¢; and ¢; denote jump contributions. If the stencils of the above interpolation operators cross I, the
jump contributions are non-zero, and they can be calculated according to Eq. (10). Otherwise, the jump con-
tributions are zero, and usual interpolation schemes are recovered. With these interpolation operators, the
interpolation for u;; and u;;,) can be written as follows:

U;j = &, (30)

u = &ju;

i,j+2 l]+2

The similar interpolation for v;; and v;,1; can be obtained.
As indicated by Egs. (8)—(10), necessary jump conditions are needed to obtain the jump contributions in the

above finite difference and interpolation schemes. The jump conditions are related to the singular force (the

force density f). Section 4 lists these relations. The singular force is calculated to enforce the prescribed motion

of the boundary I' using the explicit approach, which is mentioned in Section 1 and described in detail in

Sections 5-7. In this explicit approach, a discontinuous finite body force is applied such that the fluid enclosed

by the boundary is in rigid motion. The body force is found in Section 3.
3. Body force

The motion of the rigid boundary I' can be prescribed through X.(¢) and 6(¢), where X. = (x.,y.) denotes the
Cartesian coordinates of a point ¢ which is fixed with respect to the boundary, and 6 denotes the rotational
angle of the boundary in the Cartesian coordinate system. When the fluid in the region Q, which is enclosed
by I', is in the rigid motion, the velocity ¥ = (u,v) at a fixed point in Q" is

dx dx. dO
”—a— ds _E(y_y()7 (32)
_dy _dy. do
TR TR TR (33)
which satisfies
do
2(dt) (34)

S
—~

(99

()]
~

dz dx, d%y, 1/do\’ X 5 1
b v [i (i X, - — AB
&t V(™ dt2y+2<dt) (=) + 0 =2 | + g AT+

where the expression for s, is given by Eq. (3), A¥ =0, and b= (by, by) is

d*0

5052 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

a0
by = F (x — x(.). (37)
So a discontinuous body force b can be applied to achieve the rigid motion of the fluid in Q™. In Q" it is given
by Egs. (36) and (37). Since the flow of interest is in Q7 it must be zero in Q. The body force is discontinuous
and has the following finite jumps across I':

d’o
[bf] = - @ (_(Y _yc)fx + (X - -xc>fy)a (38)

d’0
b = = G (<0 =y (X = xm), (39)
where [b,] = [b] - T and [b,] = [b] - 7i. Hereafter [] = ()~ — (-),- denotes a jump across I' along the normal 7,

where I'" and I'" denote the outer and the inner sides of I', respectively, as shown in Fig. 1.
As indicated by Eq. (35), the pressure in Q7, subject to a constant, is

d’x. d%y, 1<d0

O A TR dt) ((c=x)* + =2 (40)

Thus, the pressure at I~ is

dx, &y 1/d6)’ > 2
Pl ==X = v 5 () (@m0, (@)
and the normal derivative of the pressure at I'~ is
op . dy, do\’
B -G g+ () @ —sn 0 =3m), @)
where % = V() - # denotes a normal derivative.

In the numerical implementation, the momentum equation, Eq. (1), is solved with b = 0 in the entire region
€, and the discontinuous body force b is equivalently applied by directly setting the velocity in the region Q~

to the desired values and incorporating the known jump conditions [b], [b,], and [b,] into numerical schemes.
4. Jump conditions

The necessary jump conditions induced by the singular force have been derived in [36]. They have been used
in the 2D immersed interface method in [37] and the 3D immersed interface method in [38]. The jump condi-
tions listed in this section are functions of both the singular force and the discontinuous body force, and they
are modified from those in [37] to take into account the discontinuous body force. The singular force appears
in the expressions of the jump conditions in the form of the tangential component f; and the normal compo-
nent f,, which are defined as

1
fo= j (fxrx +fyTy)7 (43)
1
Jn= 7 (finx +fyny)- (44)
The jump condition for the velocity is
[7] = 0. (45)
The jump conditions for the first derivatives of the velocity are
on
|:5i:| = *Reﬂ’fy?, (46)

o
{a—j}] = Ref,7,T. (47)

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5053

The jump conditions for the second derivatives of the velocity are

%%
GXJ Pt -1) + 7 (21,1y) + Pt 2) (48)
iﬁ =P (1 = 12) = Fa(21,1y) + Pi3(72) (49)
ayz = Tullty, X u2 xly u3\ty /s
_ﬁ = 7u(21,1)) + P2 — 12) — Fa(tty) (50)
_axay xly u y X u v)s
where 7,;,7,, and 7, are
. 1 [fdJzg o] OJ, [OF
= (5l 5 () o
L of,T On, [0V On,, [0V
fu = (R 3 | 0w [aj T [ay}) (52
Fus = Re([Vp] - [B]). (33)
The jump conditions for the first and second derivatives of the pressure p can be expressed in terms of the jump
conditions [p], [Z] and [Ap] The jump conditions for the first derivatives of the pressure are
op 7, 0[p]
e o I o R oo 4
_ax] J 0o t5 6n ’ (54)
o] _w ol 6p (55)
|0y J 0o |lon|
The jump conditions for the second derivatives of the pressure are
S =15 -) 4 a2 (), (56)
} o (‘c — 1) = rp(2t1) + rpn(cd), (57)
_6x6y} o (27e1,) + rpz(rz —12) — rp(nTy), (58)
where r,,7,, and r,; are
_ 1 3[p] _ OJz [Op] Aty [Op (59)
TR\ T on |ox| ox |ov])
0 |op|] On,|Op|] Onm,|Op
= <60c [an] do [ax] du {ay ’ (60)
rp3 = [Ap]. (61)

In general, if the function ¢ satisfies a Poisson equation on the region Q with the given jump conditions [¢], [g—f]
and [A¢] across the immersed boundary I', the immersed interface method can be used to solve for the function
¢. The required jump conditions of the first and second derivatives of the function ¢ can be obtained by replac-

ing p with ¢ in the above expressions. For the pressure p, the jump conditions [p], [g—’;] and [Ap] are given by

[p] = fa (62)
{%%%*WZ+%L (63)

Ou 617] [au 60} (64)

[Ap] = 2[6x6y @&’

5054 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

where % = V(-) - 7 denotes a tangential derivative.
Surface derivatives with respect to the Lagrangian parameter o are involved in computing the above jump

conditions. They are calculated using cubic splines or Fourier transformations.
5. Tangential singular force

As indicated by Egs. (46) and (47), the tangential singular force f; is related to the normal derivative of the
velocity and the surface vorticity as follows:

1 [, ov 1
ff__R_e[T'ﬁ} __R_e[w]v (65)
where w is the vorticity in 2D. The fluid in the region Q~ is in the rigid motion, so

. ov do

T- & . = a, (66)
do

=2 67

ol =25, (67)
and the above relations can be written as
1 ov do 1 do

- — T — —_ - — + — 2— .

f: Re (T on|py dt) Re <w|r dt) (68)

In the current approach, f; is determined from &|,.. explicitly.
To calculate &|.., a one-sided finite difference scheme along the normal 7 is used. The one-sided finite dif-
ference scheme with the three-point stencil shown in Fig. 4 is
0U(So) _ —30(So) + 45(S1) — ¥(S2) 2
n on + O(6n7), (69)
where on is the distance between two adjacent points on the stencil, and én > /8x* + 8)> to make sure that
two adjacent points are in different Cartesian-grid cells. This stencil can also be used for one-sided extrapo-
lation. More points can be added in the stencil for higher accuracy. The velocity at the boundary point Sy
is prescribed. The velocity at the points S; and S, are interpolated from four surrounding Cartesian-grid
nodes. For example, the velocity at the point S, can be interpolated from the nodes 7,/I,1II, and IV in
Fig. 4. Similarly, more nodes can be used for higher accuracy. When there are multiple boundaries, they

a g

52 Qt
I ® I
— y

S| N |~

s [/

Fig. 4. Stencils for one-sided finite difference, one-sided extrapolation, and bilinear interpolation.

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5055

are separated with each other by enough Cartesian-grid nodes so that no boundaries cross the interpolation
cell. No discontinuities are therefore involved in the interpolation, and the standard bilinear interpolation
scheme can be adopted for the case in Fig. 4. Because of the staggered arrangement of the velocity compo-
nents, the interpolation cells shown in Fig. 4 are different for the different velocity components.

6. Predictor for the normal singular force

The following relation can be obtained from Egs. (54), (55) and (62):
=

ot ot (70)

In general, derived from the momentum equation with the use of the identity AT = —V x & + VD, where
@ = V x U is the vorticity vector, the jump condition for the pressure gradient satisfies

1 R

[Vp] = = 2= [V > @] + [b]. (71)
For the 2D case shown in Fig. 1, Eq. (71) gives

op| 1 0w

2] -5 + 104 (12)
Egs. (70) and (72) indicate

10f, 1 [ow

7w~ Re [&} + [be], (73)

which can be integrated to give an expression for the normal singular force f,

fo= / <é E—i’] +[br])Jdoc, (74)

where [&] = 22| as w = 29 is uniform in the region Q~, and % |,.. can be calculated using a one-sided finite

difference scheme similar to Eq. (69).
The pressure in the region Q" satisfies the Poisson equation

Ap=s,, (75)
along with the Dirichlet and Neumann boundary conditions at I'"
P|r+ = [p] +P|r*a (76)
op

- (77)

0 0

Nk
-

where p| - and Z |- are given by Egs. (41) and (42), respectively. The Dirichlet and Neumann boundary con-
ditions must be con51stent which indicates that [p] must be consistent with [a”] Egs. (62) and (63) therefore
imply the necessary consistency between f, and ‘f = The consistency can be checked by the pressure in Q,
which should satisfy Egs. (40)—(42). Because of numerlcal errors, the consistency can be violated. Plotted in
Fig. 5a are the contours of the computed pressure for flow past a rotating cylinder. In the computation of
the pressure, af : was calculated using Eq. (68) and f, by Eq. (74). The violation of the consistency in this exam-
ple is indicated by the non-axisymmetric pressure inside the cylinder. To enforce the consistency, Eq. (68) is
used for calculating 3 % but Eq. (74) is used only as a predictor for f,, and a corrector for f, as described in
Section 7 is employed In other words, [p] is corrected to be consistent with [g—’;} The axisymmetric pressure
inside the cylinder in Fig. 5b is obtained with the corrector.

The reason to correct f, instead of % is as follows. It is expected that a thin shear layer may form around
the boundary I', and the vorticity in the shear layer has larger gradient in the normal direction than the tan-
gential direction. When a uniform MAC gird is used, it is likely that the vorticity field is better resolved in
the tangential direction. Eq. (74) indicates that f, is calculated from aa% |+, and Eq. (68) indicates that %i; is

r-

5056 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

a 2 b 2
15 15
1 1t
0.5} 0.5}
> 0 > 0
-0.5 -0.5
-1t 1t
15} : -1.5}
2, = 0 1 2 3 4 = -1 0 1 2 3 4
X X

Fig. 5. Computed pressure field of flow past a rotating cylinder with f,, obtained from (a) a predictor only and (b) a predictor and a
corrector.

calculated from % |+ So it is expected that % is calculated more accurately than f,. In addition, %‘j [+ is cur-
rently approximated by a one-sided finite difference scheme and %2|,.. by Fourier transformation, and the
approximation error associated with the former is larger than the latter.

7. Corrector for the normal singular force

Eq. (74) is used only as a predictor for f,. A correction df, is added to the right hand side of Eq. (74) to
enforce the consistency between f, and %’; Hereafter, the right hand side of Eq. (74) is denoted as f,, and £, is
written as f, = fno + 8f,. The correction &f, is computed such that in Q* the pressure p satisfies the Poisson
equation, Eq. (75), and the Neumann boundary condition

op| p
s

where [g—ﬂ is given by Eq. (63) and 2—5 |- is given by Eq. (42). In Q~, the pressure p thus satisfies Eq. (42). The
pressure p in Q~ satisfies a poisson equation with s, given by Eq. (34), so Egs. (40) and (41) are also satisfied.

%

0 (78)

)
r+ r-
7.1. Computing the correction

Using the linearity of the pressure Poisson equation, Eq. (27), The pressure p in Q can be split into the Pois-
son part p, and Laplace part g as p = p, + ¢. The Poisson part p, satisfies

Apy = sp, (79)
| _ [Op] _Of

[a] _ H =~) (30)
[Po] = fro; (81)

2l & (52)

where the Neumann data g, are assigned at the far-field boundary B for the pressure p = p, + ¢. Dirichlet or
mixed boundary conditions at B can be considered similarly. The Laplace part ¢ thus satisfies

Ag =0, (83)
-

lq] = &/, (85)

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5057

%

on|,

= 0. (86)

As mentioned in Section 4, the immersed interface method with cosine transformations can be used to solve
for p,. After p, is known, py|- and % p" |- can be obtained by one-sided extrapolation and finite difference
schemes as in Fig. 4. To solve for ¢, the correction Jf, needs to be known first.

With the right correction 8f,, p|, satisfies Eq. (41). So ¢|, can be known from ¢|, = p|r — py|r. If ¢
is also known, then §f, = ¢|+ — ¢g|, is known. The following system defined on Q* can be used to determine

51|r+

Ag =0, (87)
oq| _Op op| py op| _Op 9py

on|) . + {671} on | on| om ~ on|.’ (88)
Oq

A — 89
| = (89)

where g—’;’ |- is given by Eq. (42). By solving the Neumann-Dirichlet map [10] based on this system, ¢|.+ can be
obtained.

It can be verified that the computed pressure p = p, + ¢ satisfies Eq. (75) in Q" and the Neumann boundary
condition given by Eq. (78) on I'*, and this Neumann boundary condition is equivalent to

V X @®)
- va)-, (90)
r+ (Re r+

where 4 is the acceleration of the boundary. As discussed in [29], rigorous pressure boundary conditions are
related to the global velocity field to achieve zero divergence, and they can be obtained via the influence matrix
method. Because the cost of the influence matrix method for an irregular domain is generally prohibitive, the
local pressure boundary condition given by Eq. (90) is commonly used in practice for moving walls in a body-
fitted grid method. The corrector in the current approach can be regarded as the superposition of a homoge-
neous solution to the pressure Poisson equation to achieve this desired normal derivative of the pressure,
Eq. (90).
The underlying boundary integral equation for the Neumann—Dirichlet map is

L z_ 2z %), 2 (E=&) i
o) = [mIE- g e @ o1)

where, as shown in Fig. 6, C is the composite boundary that is composed of I" and B but excludes the point
60, fo and & are coordinates of two different points on the composite boundary composed of I" and B, f3 is equal
to n if Cis smooth at 50 and is equal to the angle of a corner if 50 is at the corner, and the normal 7 to C points
toward Q". In the current implementation, the above boundary integral equation is converted to a linear sys-
tem using the boundary element method. The linear system is solved using LU decomposition and backward
substitution in O(L*) time, where L represents the total number of boundary elements for C. If I is static,
the LU decomposition is done once at the beginning and stored for later use. It is possible to use a multipole
method to solve the Neumann-Dirichlet map in O(L) time.

op
on

7.2. Numerical test of a corrector-based Poisson solver

The corrector described in Section 7.1 can be used as a Cartesian-grid Poisson solver for a Poisson equation
with given boundary conditions on embedded irregular boundaries. This Poisson solver is similar to the one
proposed by Mayo [24].

As a test of the corrector-based Poisson solver, the Poisson equation A¢ =s, is solved, where
sy = —2sin(x) cos(y) is generated by taking ¢ = sin(x) cos(y). The domain for the equation is the region
Q" between the far-field boundary B (at x = &1 and y = 41) and the circle I" (at (0,0)) with radius equal
to 0.5. The Neumann boundary condltlons | 5 and ‘d’ ®|+ are given according to ¢ = sin(x) cos(y).

5058 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

" Qt

y
B

Fig. 6. Boundaries and notations for a Neumann-Dirichlet map.

Let ¢ be a known function in the region Q. For simplicity, let ¢ be an arbitrary constant ¢ here. Then
[%] is known, and [¢] is computed such that the given %| r+ 1s enforced. Split ¢ as ¢ = ¢, + . Solve for
the Poisson part ¢, with [¢,] = 0 (0 is chosen arbitrarily) in the entire rectangular region Q enclosed by B

from

Ad)o = S¢gs (92)
Ocpy| _ 0@

{a_} = anl,. 3)

(o] =0, (94)

Opy| _ 09

a—n° =, (95)

where s, = s, in Q" and 54, = 0in Q. After ¢, is known, ¢|,- and % |- are calculated. The Laplace part i/
in Q satisfies

Ay =0, (96)
%} =0, (97)
W] =[¢], (98)
% - 0, (99)

where [¢] = @glp+ + Vs — ¢ = Golp- + Ylp+ — ¢, and Y+ is determined from a Neumann-Dirichlet map cor-
responding to the following system defined on Q:

Ay =0, (100)
W _01 O _ (0| O] _ Oy (101)
on|ps Onjpe On|py on |, On|p on |’

oy

Y - 0. (102)

The computation is done with N, X N, x M, = n x n x n, where N, and N, are the numbers of MAC grid cells
along the x and y axes, respectively, and M, is the number of Lagrangian points for I'. The Neumann—Dirich-

let map is solved using Lz = 4n boundary elements on Band L =5 on I'. Table 1 summarizes the results of the

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5059

Table 1

Convergence analysis for the corrector-based Poisson solver

n 30 60 120 240 480

llealloo 2.84 x 107° 9.19 x 107* 2.57 x 1074 592 x 107° 1.41 x 1073
Order - 1.63 1.84 2.12 2.07

convergence analysis, indicating second-order convergence rate in the infinity norm. Because the computed
solution ¢ is subject to a constant, the infinity norm |ley||,, in Table 1 is calculated by

~ max(ey) — min(eg)
el = - les), (103)

The order in Table 1 is calculated by

ln(”eprevious||Oo/‘|ecurrent||o¢) (104)

order =
11’1 (ncurrent /nprevious) ’

where ecurent and eprevious denote the errors at the current and the previous columns in Table 1, respectively.
8. Numerical results

Numerical examples are provided in this section to test the accuracy, efficiency, and stability of the pro-
posed immersed interface method. The effect of the corrector is also investigated in these examples.

8.1. Circular Couette flow

In the first example, steady circular Couette flow is simulated. The domain of the simulation and the geom-
etry of the two rotating concentric cylinders are shown in Fig. 7. The domain is the rectangle of the size /. x /.
The angular velocity of the inner and outer cylinders is denoted as I1; and I1,, respectively. In the simulation,
r =0.5,r=20,l,=1[,=2,1I, =1and II, = —1. The temporal resolution of the simulation is controlled by
the convective and viscous CFL numbers

ulTl'dX UlTl'dX
CFL, = 6t< 5 Sy >, (105)
ot (1 1
FL =—|—=+—|- 1
CFL, Re (6x2 + 5y2> (106)

Fig. 7. Geometry and domain for the simulation of circular Couette flow.

5060 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

The analytical solution of the steady flow between the two cylinders is given by

A
4>
. <A1 +ﬁ)x’ (108)
A2 42
AT L () 4 "

where 7> = x* +)2, p, is an arbitrary constant, and 4; and 4, are

- Hz}"% — le%

A =—=——— 110

! i—r (110)
(H] —Hz)}”%}'%

Ay =~ "=/ 12 111

: r3—r (111)

Dirichlet boundary conditions for the velocity and Neumann boundary conditions for the pressure are applied
at the far-field boundary B in Fig. 7, and they are obtained from the analytical solution. In the current numer-
ical setup, only the inner cylinder I' is contained in the simulation domain, and its motion is enforced by the
current explicit approach.

With N, x Ny x M, =nxnxn,Lg = 4?”, and L; =7, spatial convergence analysis is conducted at Re = 10
by altering n, where N,, N,, M, Ly, and L are defined in Section 7.2. The results are provided in Table 2, indi-
cating near second-order accuracy in the infinity norm for the velocity and the pressure.

To test the stability of the method, the flow at a relatively high Reynolds number Re = 2000 is simulated
with Ny X N, x M, x Lg x Ly = 64 x 64 x 64 x 128 x 32, and CFL, = CFL, = 0.8. The simulation starts
from a zero velocity field. After a relatively longer transient process, a steady flow state is reached, as shown
in Fig. 8. The method is thus stable at this relatively high Reynolds number with the relatively large CFL
numbers.

Table 2

Spatial convergence analysis for steady circular Couette flow

n [lewllso Order [les]| oo Order llepll oo Order
30 1.56 x 1072 - 1.33 x 1072 - 2.00 x 1072 -

60 3.18 x 1073 2.29 3.19 x 1073 2.06 592 x 1073 1.76
120 1.05 x 1073 1.60 1.08 x 1073 1.56 1.78 x 1073 1.73
240 267 x 1074 1.98 2.65%x 107 2.03 1.15% 1073 0.63

(0
A0
(oD
Goncoo
g
A0

9 “"?"f?\“‘O‘Ofo‘o‘o‘o,o,o%

S
R
R
R
SRR
R
RN
R

S
QX
N XX
RSO
% XX
‘?%“Vﬁﬁﬁﬁ%ﬂ$?gﬁz” 1,

RN
R W
RN S
0 “\\“\\‘\\‘\\\\‘ N
x‘\“\\“\\\‘\\\
R
R

N
R

ORI
R
R

XXX
KRR
RO
R Q.‘uu,::'.

03
SNSRI,

-1 -1 X

Fig. 8. Computed circular Couette flow at Re = 2000: (a) u and (b) p.

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5061

Table 3

Spatial convergence analysis for steady circular Couette flow computed without the corrector

n el oo Order [les]loo Order lep]loo Order
30 1.54 x 1072 - 133 x 1072 - 3.52x 1072 -
60 3.63 x 1073 2.08 3.62 x 1073 1.88 2.57 x 1072 0.45
120 1.10 x 1073 1.72 1.10 x 1073 1.72 248 x 1072 0.05
240 2.82x 1074 1.96 3.05 x 107 1.85 6.94 x 1072 —1.48

The effect of the corrector on the simulation accuracy is investigated by turning it off. Similar to Table 2, the
results of the convergence analysis without the corrector are shown in Table 3. The numerical errors for the
velocity in Table 3 are about the same as those in Table 2, and the accuracy for the velocity is still second-
order. However, the numerical errors for the pressure are not reduced by increasing the grid resolution.

8.2. Flow past a stationary cylinder

In the second example, flow past a stationary cylinder is simulated at Re = 20,40, 50, 100, and 200. Shown
in Fig. 9 are the geometry and domain of the base simulation. The base simulation is referred as Case (n, /) and
is used for plotting figures. The spatial resolution of the base computation for Re = 20,40 and 50 is given by
Ny XN, x M, x Lg x Lr =960 x 480 x 256 x 256 x 128, and for Re = 100 and 200 by 1600 x 800 x 256 x
256 x 128. The effect of the spatial resolution and the domain size is investigated by reducing the discretization
density to % x % x M= x Lo x Lt in Case (2, 1) and by extending the domain size to 3= x % in Case (n,%). The
effect of the corrector is also investigated by turning it off in Case df, = 0. The time step of all the computation
is controlled by CFL, = CFL, = 0.5.

A free stream with u = 1 enters the domain in the direction of the x axis. The Neumann boundary condition

% =1 2775‘ is applied for the pressure at the inlet. At the two sides of the domain,zsymmetric boundary condi-
tions are used. At the domain outlet, the boundary conditions & = 0 and g—i =1 275’ are used. The initial veloc-
ity field @, is given by

% =U-Vy, (112)

where —Vy is a divergence-free correction to the uniform velocity field U = (1,0) to enforce the no-penetra-
tion condition on the cylinder, and y satisfies

Ay =0, (113)
ERET) (24,48)
y4
u=1 D 4 \(x
1y - Lo
r
IEE) B (24.-8)
[|
[~ |

1

X

Fig. 9. Geometry and domain for the simulation of flow past a cylinder.

5062 S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071

O =U-7, 114
on

r{
Oy
e p—) 115
anl, (115)

The corrector-based Poisson solver described in Section 7.2 is used to solve for y.
In general, the fluid force F' = (F,,F,) applied by the fluid on I'" can be calculated from

. . d’z, o\’ . .
F——/rfdoH—S i +S(a) (¥ — Xem)s (116)

where S is the area enclosed by I', and X, is the coordinates of the geometric center (the center of mass) of Q.
The drag and lift coefficients are defined as C, = 2F, and C, = 2F,, respectively. The surface vorticity o, and
the surface pressure p, on I'* are calculated from

ws; = —Ref, + 0|y, (117)
py= o+ 1l (118)

where o| = 2%, and p~ is given by Eq. (41). In the current example, the cylinder is stationary and X¥. = Xy,

so C, = =2 [, fida, C, = =2 [, f, do, o, = —Ref and p, = f, (subject to a constant).

8.2.1. Re = 20,40, and 50

At Re = 20 and 40, the flow reaches a steady state. Two recirculating bubbles are formed behind the cyl-
inder, as shown in Fig. 10. The characteristics of the recirculating bubbles, the separation angle @, and the
drag coefficient C, are compared with experimental and other numerical results in Table 4, where the length

a 04 : b
L |
ozt 8 I—— | 05}
> - 0
0 b
0.5
-0.2
. R . < R -1 s L R
0.4 0.6 0.8 1 1.2 14 16 -1 0 1 2 3
X X

Fig. 10. Streamfunction contours for flow past a cylinder: (a) Re =20 and (b) Re = 40.

Table 4
Summary of flow characteristics for flow past a cylinder at Re = 20 and Re = 40

Re =20 Re =40

L a b 2) C, L a b 2) C,
Ref. [33] - - - - 2.22 - - - - 1.48
Ref. [5] 0.93 0.33 0.46 45.0° - 2.13 0.76 0.59 53.8° -
Ref. [6] 0.94 - - 43.7° 2.05 2.35 - - 53.8° 1.52
Ref. [8] 0.91 - - 45.7° 2.00 2.24 - - 55.6° 1.50
Ref. [37] 0.92 - - 44.2° 2.23 2.21 - - 53.5° 1.66
Ref. [22] 0.93 0.36 043 43.9° 2.16 223 0.71 0.59 53.4° 1.61
Case (n,/) 0.93 0.36 0.43 44.0° 2.23 2.24 0.72 0.60 53.8° 1.66
Case (§,1) 0.90 0.38 0.42 43.2° 2.24 221 0.73 0.56 52.9° 1.70
Case (n,3) 0.91 0.36 0.42 43.6° 2.14 2.24 0.71 0.60 53.4° 1.60

Case 6f, =0 0.93 0.36 0.43 44.0° 2.14 2.24 0.72 0.60 53.8° 1.60

S. Xu/lJournal of Computational Physics 227 (2008) 5045-5071 5063

L and the location (0.5 4 a, +2) of the recirculating bubbles are defined in Fig. 10. The current results lie well
within the range of values given by the other data.

Between Re = 40 and 50, the flow becomes unstable. Round-off and other sources of numerical errors can
destabilize the flow in the simulation. The time evolution of the drag and lift coefficients of the flow at Re = 50
is shown in Fig. 11, indicating that an unsteady state is reached after a considerably long time.

In Fig. 12, the surface vorticity and pressure on the cylinder are compared with the previous computational
results by Braza et al. [2] for Re = 20 and 40. Very good agreement is obtained for the surface vorticity. The
surface pressure behind the cylinder is slightly lower in the current simulation, which explains why the current
drag coefficient is slightly higher.

The results from Case §f, = 0, where the corrector is turned off, are also shown in Table 4. They agree with
the others. Comparison of steady flow details near the cylinder computed with and without the corrector is
shown in Fig. 13, indicating a close match.

8.2.2. Re = 100 and 200

At Re = 100 and 200, the flow is unsteady, and alternatively shedded vortices form the well-known Karman
vortex street behind the cylinder. The time evolution of the drag and lift coefficients is shown in Fig. 14. Table
5 compares with previous numerical results the drag coefficient C,, the lift coefficient C,, and the Strouhal

a 156 b o008
1.555f 0.06f
1.551 0.04f ‘
1.5451 0.02f ‘h
O 1.54 o> 0 m
1.535(-0.02f ‘
1.53f -0.04f “
1525} -0.06f ‘
5% 200 200 600 800 1000 ~008 200 200 600 800 1000

t t

Fig. 11. (a) Drag and (b) lift coefficients versus time for flow past a cylinder at Re = 50.

a b 12
